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Abstract--This paper introduces an extension of entropy-
constrained residual vector quantization (VQ) where intervector
dependencies are exploited. The method, which we call condi-
tional entropy-constrained residual VQ, employs a high-order
entropy conditioning strategy that captures l_cal information
in the neighboring vectors. When applied to coding images,
the proposed method is shown to achieve better rate-distortion
performance than that of entropy-constrained residual vector
quantization with less computational complexity and lower mem-
ory requirements. Moreover, it can be designed to support pro-
gressive transmission in a natural way. It is also shown to
outperform some of the best predictive and finite-state VQ tech-
niques reported in the literature. This is due partly to the joint
optimization between the residual vector quantizer and a high-
order conditional entropy coder as well as the efficiency of the
multistage residual VQ structure and the dynamic nature of the
prediction.

I. INTRODUCTION

NTROPY coding is now being used frequently in con-
junction with vector quantization (VQ) for image coding.

Its use is motivated by the fact that the probability distribution

of VQ coded images is generally skewed or nonuniform. While

the average bit rate can most often be reduced by entropy

coding the VQ codewords, improvement in rate-distortion

performance is usually attainable by embedding the entropy

coding in the design process such that both the VQ codebook

and entropy coder are optimized jointly.

By generalizing the entropy-constrained scalar quantization

design [1]-[3] to the vector case, Chou et al. introduced an it-

erative descent algorithm for the design of entropy-constrained

vector quantizers (EC-VQ's) [4]. Later, Chou applied EC-VQ

to image coding [5] and showed that the entropy-constrained

optimization yields a significant performance gain. More re-

cently, the entropy-constrained optimization was applied to
residual VQ (RVQ), which is also known as multistage VQ

[6], [7]. This form of VQ, which is called entropy-constrained

residual VQ (EC-RVQ) [8]-[10], consists of a cascade of

VQ stages where each stage operates on the input/output

difference of the previous stage. The individual stage symbols

are entropy coded based on a model using probabilities that are

conditioned on previous stage output symbols. For a number of

reasons stemming from the memory and computationally effi-
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cient structure of the RVQ, EC-RVQ can outperform EC-VQ

and usually achieves image compression results competitive

with those of JPEG and subband coding [8], [9].

Like EC-VQ, EC-RVQ is a memoryless vector quantizer.

This is because the EC-RVQ design algorithm [8], [10] mini-

mizes the distortion subject to a constraint on the first order (or
zero order conditional) entropy of the vector quantizer output.

However, better rate-distortion performance can generally be

achieved by incorporating memory into the vector quantizer.

One way to incorporate memory is to employ an entropy

coder whose output is conditioned on previous quantizer

outputs. This allows for the incorporation of information about

neighboring vectors into the coding of the current vector,

which is tantamount to exploiting the inherent memory of

practical sources such as speech and images. In fact, by

using a first-order conditional EC-VQ of linear predictive

speech coefficients [11], Chou and Lookabauoja obtained a
40-60% reduction in bit rate as compared to conventional EC-

VQ. However, even by limiting the number of conditioning

symbols, or previously coded vectors, to one, 256"-' = 6.3536

conditional probabilities had to be estimated and stored. Shlce

the entropy coder cost, in terms of computation and memory,

increases exponentially with the number of conditioning sym-

bols and the size of the EC-VQ codebook, this technique can

quickly become impractical.

This paper extends EC-RVQ to a vector quantizer that

exploits memory by using higher order conditional entropy
codes. Unlike EC-RVQ, which condkions on the output of the

previous stages, the high-order conditional EC-RVQ (CEC-

RVQ) introduced here takes advantage of the information

available in previously coded vectors by conditioning over a

spatial-stage region of support. While conditional EC-VQ is

severely impaired by the exponential dependence of memory

and complexity on the number of conditioning symbols and

the VQ codebook size, CEC-RVQ is not as sensitive. However,

some constraining exponential dependencies are still present.

Hence, the central part of this work is the introduction of

an effective strategy for achieving high rate-distortion per-

formance subject to constraints on computation and memory.

The high-order CEC-RVQ presented next is shown to achieve

reductions in bit rate by typically 30-40% over EC-RVQ while

maintaining the same reproduction quality. Perhaps even more

significant is the fact that this improvement can be achieved

without the enormous storage and complexity requirements

that accompany high-order conditional EC-VQ, finite state

VQ, and other predictive schemes of this type [7], [i 1]-[14].

Finally, as with other multistage and/or _ee-structured VQ

1057-7149/96505.00 © 1996 IEEE



2 IEEE TILANSAC'I]ONS ON I_La, GE PROCESSING, VOL. 5, NO. 2. FEBRUARY 1996

TO

FIRST OP.DE]_ ENTROPY CODER L

Fig. 1. High-level structure of a P-stage EC-RVQ encoder.

stage p-1 stage p stage p+l

schemes, CEC-RVQ can be designed to support progressive j_o4_'¢,,
transmission. Even though some compromises'in overall R(D)

performance are unavoidable, the losses are not severe, and
the net results are very competitive. V(._p

/

II. I-/]GH-ORDER CONDmONAL EC-RVQ (CEC-RVQ) /Fig. 2.
/

To set the stage for discussion, consider the P-stage ECJ
RVQ encoder shown in Fig. 1. Each stage mapping, VQ_

is a composition of a stage encoder mapping Ep such that
Ep(Xp) = jp, where jp is the output symbol or index and a

stage decoder mapping Dp given by D v (Jr) = 3_p. The out-

puts Jl, J__, • "", JP of the P-stage encoders are entropy coded

using the first-order entropy encoder L. More specifically, let
X _ be the nth vector of k random variables taken from a

discrete-time, continuous-valued source. The input x", which

is a realization of X '_, is encoded using a fixed-length encoder

mapping E = (El, E2, ..., Ep) to produce a vector of fixed-

length codewords or symbols ff = (j_ , j'_ , ..., j'_ ). Assum-

ing that a given stage VQ codebook Cp has _ code vectors,

the symbol j_ belongs to the set fly = {0, 1,..., N; -
1}. A variable-length entropy encoder L is then applied to

map the symbols j_ j_, -.-, j_ into a variable-length code-

word c(j_, j_, ... j_ ), where c(j'_, "'_ ..,, 3.-, • j_) isacon-
catenation of P stage-conditional variable-length codewords

cl, c2, ..., cp. The decoding process consists of applying the
entropy decoder L-1 to recover the symbols j'_, j'_, ..., j_,

which are then used by the fixed-length decoder mapping D =

(D1, D2, ..., Dp) to identify the vectors in the appropriate
stage codebooks. Reconstruction is achieved by simply sum-

ming the decoded stage code vectors. The encoding/decoding

process can be represented compactly by x_ = Q(z,) =
D[E(z,_)], where _,_ is the reconstructed vector, and Q, E,

and D are the direct-sum quantizer, direct-sum encoder, and

direct-sum decoder, respectively.

The goal of the EC-RVQ design algorithm is to seek a set of

stage codebooks that _zes the average distortion subject

to a constraint on the zero-order conditional entropy of the

RVQ codewords. This is done iteratively (as in [4]) based

on the necessary conditions derived in [10]. Specifically, the

algorithm minimizes the Lagan_an

Jz = E[d(X", :Kn)] + AE[_.(L(j_))]

where d(x '_, z") is the distortion between z" and x'_, and

f[L(j')] is the length of the codeword L(j') associated

with the vector of P-stage indices j'_ = (j_, j]_, ..., j_),

I

p/
Illustration of a conditioning structure for a 12th-order CEC-RVQ.

• .n 2 ,_n(jp ;$ ,_ )

Fig. 3. Three-level, 4-ary tree with Rp = 4 and m r, = 3.

where j" is a realization of J'_ and a member of the set

J = J_ x J2 x ... x tip. The Lagran_an parameter A is

used to weight the influence of the expected codeword lengfla

or, equivalently, the bit rate, against the expected distortion.

For each parameter A, the EC-RVQ algorithm finds points on

the convex hull of the operational distortion-rate curve given

by the function [4]

Dk(n) =
inf {E[d(X", D(E(X'_)))]IE[g(L(J'_))] < R}.

(E. D, L)

The design algorithm for the ruth-order conditional EC-

RVQ. which we will call the CEC-RVQ algorithm, minimizes
the Lagrangian

=

+ )_E[_+(L(j,,Ij,-_ j,_-2,.., j_--_))]

where _[L(j'Ij'-I,j'-2,...,j"-_)] is the length of

the codeword conditioned on ,+ previous output symbols
j,-1 j,-2 "", j,-_,. The encoder and decoder optimiza-

tion steps of the 77_th-order CEC-RVQ algorithm are identical
to those of the EC-RVQ algorithm. However. the entropy coder
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optimization is different because conditioning is performed on

not only previously coded stage vectors but also on previously

coded neighboring vectors. Assuming the use of an ideal

entropy coder, the minimum expected length of the conditional

entropy codes is essentially the ruth-order conditional entropy
of the RVQ codewords, i.e.

min E[t(L(J'_IJ '_-1, jn-2, ..., jn-m))] =
L

g(j,_[j,-1, j,_-2,.. ", j,_-,,) (1)

where H denotes the conditional entropy. Since

j = (Jl, j2,'", jP), we call write the conditional self-

information, which corresponds to the entropy given by
q,

(1), as

£(L.(j_Ij_-I, in-2 ..., j,_-,_)) =
P

_-log 2 pr (j_]j__,, .-., j_,
p----1

p--1

m

_.n-1 .n--i .n--2 .n-2 .n-m "

ae , ", a_ ,am , ", a, ,'.',am , ''', J_-m)

P P P

(2)

where L* satisfies (1). Since exact analytical descriptions for

probability distributions of images do not exist, a large training

set is employed in the entropy coder optimization step to

estimate the conditional probabilities.

]]1. COMPLEXITY ISSUES

The complexity of the mth-order CEC-RVQ design algo-

rithm can quickly become very large depending on the number

of stage codebooks, the size of each stage codebook, and

the order rn. Fortunately, all of the complexity reduction
techniques such as using M search in encoding, which have

been developed for the EC-RVQ design algorithm [8], [10],

can be used in this algorithm. However, the entropy coder

optimization step of the proposed algorithm is much more

complicated than that of the EC-RVQ algorithm. As can be

seen from (2), the memory requirements, design, and imple-

mentation of the ruth-order entropy coder can easily become

unmanageable. The rest of this section discusses techniques

for substantially reducing the computational complexity and

memory of the high-order entropy coder while sacrificing

minimal loss in performance.

Equation (2) reveals that the length of the optimal pth-stage

variable length mapping is the conditional self-information

given all previously coded (raP+p- 1) stage vectors. This is

illustrated _aphically (in the context of image coding) in Fig.

2, where the shaded block in the middle is the stage vector on

which conditioning is being performed. A total of m (12 in this

case) neighboring blocks is utilized for conditioning. These

blocks define the spatial region supporting the conditioning.

The solid arrows show these neighboring blocks at the pth

stage. In addition to the spatial dimension, conditioning is

based on corresponding blocks at different stage levels, which

is shown in the fi=mareusing dashed arrows for the (p - 1)th

(1,I)

(_a) [-3 (2,2)E

(1,3) [] (2,3)

(3,2) 3

(3,_) [_

(4,2)[

(4,3) C-]

(4,4) ['7

(4,L4) [_

Fig. 4. 4-ary tree for allocation of orders of stage entropy coders. The pair

(p, Lp ) corresponds to (Np, Lp , Hp, L_ ).

and (p + 1)th stages. The 3-D spatial-stage region of support
illustrated in Fig. 2 is uniquely represented by the two spatial

displacements -_1 and .Xd and the stage displacement Ap,

all with positive values in the direction of the reference axis.

Obviously, the number of all possible combinations of triples

(AI, A J, Ap) is equal to the number of previously coded

(rnP + p - 1)-stage vectors.

As is implied, the RVQ stage structure is assumed to have

P stages with a fixed number N v (39 = 1, 2, ..-, P) of code
vectors in each stage codebook. The set of all combinations of

conditioning symbols representing blocks (or vectors) in the

spatial-stage region of support is the set of conditioning states.

Each state defines a unique set of codeword probabilities for

the pth stage. The number of conditioning states Sv for the
pth stage is given by

: (Ni) m (fifl)(.N2) ... (G_I). (3)

It is clear from the above equation that the number of con-

ditioning states increases rapidly with the number of neigh-

boring blocks, the number of stages P, and the stage code-

book sizes N1, N2, ..., Np. Even by limiting m, P, and

N1, N_, .-., Np to small values, Sv can still be very large,

requiring a large number of computations to estimate the

conditional probabilities and an exorbitant amount of memory

to store them. For example, consider a fourth-order CEC-RVQ

(i.e., an EC-RVQ that is conditioned on four symbols repre-

senting four neighboring vectors), where the RVQ contains

eight stage codebooks, each with four code vectors. Then, the

number of conditioning stage symbols or previously coded

stage vectors at the pth stage is [(4) (8) + p - 1] or 31 + p. Since

(3) gives the number of states for each stage p, the total number
of conditional probabilities that must be computed and stored

for all P stages is (S1)(N1) + (S._,)(A'_)+ ..-+ (Sp)(Np).
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stage p-1 stage p

I

Fig. 5. Illustration of a conditioning structure for CEC-RVQ in a progressive

transmission environment.

In our example, this is equivalent to 4aa + 434 + ... + 440 =

(433)(21845) _ 1.61 x 10_4, which is unmanageable.

To reduce the complexity of the entropy coder, the number

of conditioning stage symbols for a given stage p is limited

to rap, where rn.p << (rnP + p - 1). Since this will increase

the entropy in general, the appropriate solution is to select

the particular mp conditioning stage symbols that result in the

lowest possible entropy for the pth stage. The optimal solution

can be found by exhaustively searching the [Rp!/rap!(Rp -

rnp) !] possibilities, where R v = mP + p - 1. Of course, this

can quickly become a formidable task, especially when rnv

and R v are large.

The problem of choosing a subset of conditioning symbols

has been considered previously in other contexts, with varying

degrees of success. There are several reasonable possibilities,

some of which we higlflight next. The selection of the best

subset of conditioning symbols can be heuristically based.

For example, symbols representing vectors closer in space to
the current vector can be selected first. This leads to reason-

able coding results in many practical predictive quantization

systems. However, this approach falls short of achieving the

best performance for a given number of conditioning symbols.

This is because using neighboring vectors does not necessarily

lead to the lowest achievable conditional entropy. A better

and simple way to select, say, rnp conditioning stage symbols

1 E 7_.p, where Rp is the spatial-stage regionis to select sp

that contains P_ conditioning stage symbols such that the

first-order conditional entropy H(j_ ]@) is a minimum. Then,

..., sp ) is determinedthe rest of the sequence (i.e., .s_, m_ .

by selecting s_, where H(j'_ [s_) is the ith smallest first-
order conditional entropy. The problem with this technique,

though, is that its effectiveness decreases quickly as the order

mp increases. This is because H(j'_[@-:) < ., iH(Jp Isp) <

H(j_ [s_+1) does not, in general, imply H(j_ i-1 iI,p , <
g(j_ I@- 1, s_+l). In fact, since the selected conditioning

stage symbols often belong to different stages, the statistical

dependencies between them are usually complicated, making
this simple technique inadequate even for moderate values of

rap.
Another approach, which is described in [15], consists of

using a certain conditional entropy to decide the order of

the conditioning symbols sequentially. Given that the first
i-1

2 .. sp ) have been(i- 1) conditioning symbols (s_, sp, ;,

decided, the ith conditioning symbol s_ is chosen to be

that one such that the conditional entropy HOp'n Isp,i Spl =
i-a = co), where co is the most probable previousC O _ • • • : 8p

symbol, is a minimum. This technique was shown to perform
well when used in subband HDTV coding [15]. However, our

experimental results show that this suboptimal method does

not seem to consistently provide good complexity/performance
tradeoffs.

In this paper, we introduce an effective and efficient algo-

rithm that can achieve a performance arbitrarily close to that

of the exhaustive search technique. This algorithm is based on

the idea of tree search and is illustrated with the aid of Fig.

3. The tree shown in Fig. 3 is constructed such that the root

node has Rp branches where the ith (i = 1, 2, ..., Rp) branch

corresponds to the first-order conditional entropy H(3 r'nisp).i
Then, the ith node at the first level has Rp - 1 branches

where the jth (3 = l, 2, ..., Rp - 1) branch corresponds

to the conditional entropy H(j_ I@, @), and so on until the

(rap - 1)th level is reached, where each node has (R_ - rnp + 1)
., 2 ., sv ). Note thatbranches corresponding to H(jp [sl , sv, ""

1 C_p,Sp

q 1

ET_p and s}¢,_,
9

and

Sp p ,rip ¢ 1 "'', 87 p # 8p r-1C T_p and sp sp ,

One can easily see that this tree is symmetric in the sense

that the order of the selected symbols is not important. For
example, the path (2, 3, 4) shown in Fig. 3 is the same as

the path (4, 3, 2). Exploiting this symmetry property can

substantially increase the speed of the searching process. It

is evident that the simplest approach is to sequentially search

the tree. In such a case, the conditioning symbol leading to the

lowest first-order conditional entropy must also be one of the

two symbols resulting in the lowest second-order conditional

entropy, and so on. Since this is generally not true, lower

entropies can be obtained by using the (M, L) algorithm [16]

or the dynamic M-search technique [17]. This is because

such searching techniques usually save more than one tree

path, which is a process that may produce a sequence of

conditioning symbols, where none were chosen at previous
levels of the tree. Dynamic M-search is used in this work

because it achieves close-to-optimal performance with very lit-

fie additional computational and memory complexity. Finally,

note that depending on the size of the spatial-stage region

of support or, equivalently, the number R v of conditioning

symbols, even stage-sequential searching of the tree shown

in Fig. 3 can require an exorbitant amount of computations

and tremendous memory requirements. Although the searching

process is done during the design (i.e., off-line), this can still

be an obstacle. However, by using the assumption that the
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TABLE 1

NUMBER AND LOCATION OF CONDITIONING SYMBOLS: SYMBOL NO. 1, SYMBOL NO. 2, SYM'BOL NO. 3, AND SYMBOL NO. 4

No. of

Stage Symbols Alp

A1

1 4 1024 AJ

Ap

AI

2 4 1024 AJ

Ap

A1

3 3 256 AJ

Ap

AI

4 4 1024 AJ

Ap

5 2 64 AJ

Ap

AI

6 3 256 AJ

Ap

AI

7 3 256 AJ

Ap

AI

8 2 64 AJ

Ap

Axl

9 2 64 AJ

Ap

AI

10 2 64 AJ

Ap

Symbol # 1 Symbol # 2 Symbol # 3 Symbol # 4

t 0 1 2

0 ' 1 -1 0

0 0 0 -1

1 0 1 2

0 1 -1 -1

0 0 0 1

1 0 0 N/A

0 1 0 N/A

0 0 1 N/A

0 0 1 1

0 0 0 0

1 2 0 1

0 0 N/A N/A

0 .N/A N/A

2 N/A N/A

o 0 0 N/._
0 0 0 N/A

4 3 N/A

0 0 N/A

0 0 N/A

2 3 N/A

1 N/A N/A

0 N/A N/A

0 N/A N/A

1 N/A N/A

0 N/A N/A

0 N/A N/A

0 N/A N/A

N_

N_

N/A

N/A

memory of the source decays rapidly, we can choose a region

of support containing only a moderate number R v (50 < Rp <
100) of conditioning stage symbols. Experimental work in

image coding supports the validity of such an assumption.

Since our objective is to minimize the average output

rate of all the stages given a fixed level of entropy coder

complexity and memory, the parameters {my, 1 _< p _< P}
must be carefully determined. For each stage p, complexity

and memory of the entropy coder grow exponentially with

m v and the output alphabet sizes of the stage VQ's. This is
because the number of conditioning states at stage p is equal

to the product of the stage codebook sizes corresponding to
i i.e.the selected stage symbols sv,

Sp = N¢(_)N¢(s_) "" N¢(s_,r ). (4)

The function ¢ maps the symbol sip into its corresponding

i is the second-stagestage value. For example, if symbol sv

code vector in one of the neighboring blocks, then ¢(sip) is

2, and N¢(._;) = N2, which is the size of the sez,ond-stage
codebook. The problem now translates into minimizing the

output entropy

P

2 . s p)=E  (g14, sp,
p=l

(5)

subject to the constraint that

P

A/p ___ _Y rnax

p--1

where 5_ is the size of the pth-stage codebooL A_ = SpNp,
and N __ is the maximum allowed number of conditional

probabilities or variable length codes. N m_× provides some

control over the system cost because it is a measure of

complexity and memory required by the entropy coder.

A solution to (5) can be found by constructing another

tree, which is shown in Fig. 4. The root node of this tree

has P branches: one per stage. The subtree rooted at each

branch node p is a unary tree of length Lp. Each subtree

has Lp nodes, where each node (p, i)(1 _< i _< Lv) cor-

responds to a pair (Np, i, Hp,i), where A/v,i = Sp, i A_ =

N¢(,_)N¢(_,_) ... N¢(%)Np is the number of conditional prob-
abilities that correspond to the pth-stage conditional entropy

Hv, i = HOv"_ [sv,a s_,° .. ", sip). Clearly, we must have, for
p = 1.2.....P.

H;,1 k Hv,2 >__'" >__Hp, L,.

Therefore, the node (p, 1), or the node closest to the root node,

corresponds to the pair (A/p, 1, Hv, 1). and the node (p, Lv),

or the node farthest from the root node, corresponds to the

pair (A/p, z _ , Hp, L, ). For each stage p, Hv, i is obtained using
dynamic M-search (as mentioned before) through locating, for

each i, the best i conditioning symbols.
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Fig. 6. Spatial region of support, o

Let S be a pruned subtree of the constructed tree T, where

the stage associated with the pth branch now has a number of

conditional probabilities % and an entropy hv. The number

of conditional probabilities associated with S is

P

= Z
p=l

and the high-order conditional entropy is

P

h(s) : Z hp
p=l

where Hp, 1 >_ hv >_ Hv, f,. The optimal pruning (or BFOS)
algorithm described in [18] and [19] can be used to find

, * .. , * that minimize h(S) subject tothe numbers a_ %, . %
a'(S) < N m_×, where N m_× is the maximum allowed number

of conditional probabilities over all pruned subtrees S _ 7-.

Note that the depth Lp of the BFOS tree surely needs to be
<< (rap + p - 1). Due to obvious exponential dependencies,

increasing L v will quickly increase both the search complexity
and memory required to store the estimated probabilities. In

fact, there is usually not enough image data to obtain rea-

sonable estimates of very high-order conditional probabilities.

Fortunately, very high-order stage statistical models are neither

necessary nor useful. Experimental results indicate that most

of the entropy reduction is usually obtained by using values

of Lp between 1-8 and that very little gain is achieved by
choosing larger values.

IV. PROGRESSIVE TRANSMISSION

CEC-RVQ is potentially attractive for use in a progressive

transmission environment. The successive approximation na-

ture of the RVQ structure results in multistage approximations

of the input image. Thus, a lowpass approximation can be

obtained by transmitting information from only the first-stage
indices. Then, the quality of the reproduction can be succes-

sively improved by transmitting information from subsequent

stage VQ's. This suggests that the CEC-RVQ stage indices be
coded and transmitted in a different order. Instead of sending

all stage codewords that correspond to a block before moving
to the next block, we send the codewords on a stage-order

basis. In such a mode of operation, the conditioning structure

3_

33,$

32.5

n- 32
=7

31.5

31

3_

//i/1¢//;///"/// /

0.25 0 3 0.35 0 4 0.45 0 5 0.55 0 6 0.65
BIT RATE (BPP)

0.7

Fig. 7. PSNR (in decibels) for EC-RVQ and CEC-RVQ. The vector size is

4 × 4. The initial RVQ codebook contains 10 stage codebooks, each with 4

stage code vectors.

shown in Fig. 2 is clearly not appropriate. Subsequent stage

indices for previously coded vectors are no longer available to

the decoder. However, noncausal spatial regions of support can

be used instead. Fig. 5 illustrates a typical conditioning scheme

in a progressive transmission environment. Notice that half-

plane support is present for conditioning at the current stage

level p, and fuU-plane support is available for the previous

stage level p- 1. Having full-plane support in stages 1 to p- ]

allows CEC-RVQ to exploit more spatial dependencies, which

are usually stronger that interstage dependencies. In fact, such
a conditioning structure is shown experimentally to lead to a

1-5% reduction in average entropy for the same complexity.

A negative consequence of this approach, however, is that

noncausal encoding/decoding procedures cannot be accommo-

dated. In particular, neither M-search nor joint RVQ decoder

optimization should be used. This is because we do not

know when transmission is going to be halted. Abandoning

these noncausal procedures has the disadvantage of lowering

the overall rate-distortion performance but, on the positive

side, has the potential for better reconstruction quality at the

intermediate stages. A description of a fully embedded 8 x 8

CEC-RVQ is presented in the next section.

V. SYSTEM SPECIFICATIONS AND RESULTS

The CEC-RVQ was examined carefully in the context of

image coding. Twelve 8 b/pixel monochrome images of size

512 x 512, including six luminance images extracted from color

images taken from the USC database, were used to design

CEC-RVQ codebooks. In all cases, test images were excluded
from the training set.

In the first experiment, each CEC-RVQ codebook con-

tains ten stage codebooks with four 4 x 4 code vectors in

each codebook. The conditioning scheme we use is the one

illustxated in Fig. 2. There are two types of dependencies

exploited by the CEC-RVQ: intrastage, denoted by the solid

arrows, and interstage, denoted by the dashed arrows. Both
previous and subsequent stage symbols are used in the search
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for the best m v conditioning symbols. The only exception
is the current symbol where only previous stage symbols

can be used. In other words, conditioning is restricted to

previously coded vectors. Fig. 6 shows the spatial region of

support for a single stage. As shown in Figs. 2 and 6, only

(12)(10) + p - 1 = 119 + p stage symbols are searched at

stage p. This choice leads to a good compromise between

rate-distortion performance and search complexity. The top

two rows, left two columns, and fight two colunms of the

input image are special cases because they are at the image

boundaries and consequently are treated separately. For such

input vectors, the entropy tables are constructed based on first-

order interstage conditioning only. This does require storing

an extra set of tables, but the additional menIory involved is
not significant.

To _ze the output entropy for a fixed maximum

number of 4096 conditional probabilities, a balanced tree
with depth 6 is constructed, where the best six conditioning

stage symbols are used. The BFOS algorithm described in

the previous section is used producing the results shown in

Table I. As mentioned in Section Ill, the variable Ap denotes

the stage displacement, with negative values indicating that

the associated conditioning stages are subsequent ones, i.e.,

the conditioning stages are [Apl in advance of the current

stage (see Fig. 2). The variables A1 and AJ denote the 2-D

displacemenl$in the image that specify the conditioning stage

symbols spatially. Negative values of A1 and AJ indicate

displacements to the bottom and the right, respectively. Notice

that some of the symbols selected by the algorithm are not the

closest ones to the current symbol. The variable A'_ denotes the

number of conditional probabilities or variable-length entropy
codes (at the pth stage) that must be stored. Since all stage

codebooks have four stage code vectors, A_ must be a power

of 4. By adding the A/"v 's, we obtain 4096, which is the target
number of conditional probabilities. For this constraint of 4096

conditional probabilities, the algorithm obtained the spatial-

stage region shown in Table I as being the best one. These

results may differ significantly for a different set of training

images and a different initial region of support. However,

the results presented in Table I, as well as results of other

experiments using different sets of images, show consistently

that a majority of the conditioning symbols represent adjacent

coded blocks (or vectors), indicating that spatial dependencies

are stronger than interstage dependencies.

Fig. 7 shows the PSNR performance of EC-RVQ and CEC-

RVQ for the test image LENA based on 4 × 4 vectors. Each EC-

RVQ codebook also contains ten stage codebooks with four

code vectors per stage codebook. Both EC-RVQ and CEC-

RVQ codebooks are optimized jointly and are searched using

the M-search technique (with M = 2), requiring 76 vector

Lagran_an calculations per input vector. Moreover, entropy

conditioning was performed based on the four previous stages

of the RVQ. The number of conditional probabilities that must

be computed and stored is

41 + 42 + 43 + 44 +-..+ 44 = 6484.

7

Rate

0.38

0.31

0.25

TABLE I1

PSNR (I_ DECmELS) OP CEC-RVQ, FS-VQ, VR-FSVQ,

PR-VR-FSVQ, .AND DFS-VQ FOR THE I/vt_GE LENA AT

0.38, 0.31, .AND 0.25 bpp. THE VECTOR SIZE ls 4 × 4

CEC- VR- PR-VR-

RVQ1 CEC-RVQ2 FSVQ FSVQ FSVQ DFS-VQ

32.62 32.98 30.16 32.00 N/A 31.67

32.04 32.38 29.56 31.66 31.19 31.29

31.18 31.51 28.83 30.31 30.74 30.0-0

TABLE m

NUMBER OF SVMaOLS (NS) .AND LOCATION (AI, AJ, Ap)
OF CONDITIONING SYMBOLS: SYMBOL no. 1, SYMBOL

no. 2, AND SYMBOL no. 3 FOR THE 8 X 8 CEC-RVQ

Stage NS Alp
1 3 256

2 2 64

3 2 64

4 2 64

5 2 64

6 1 16

7 2 64

8 2 64

9 1 16

10 2 64

11 2 64

12 1 16

13 2 64

14 2 64

15 1 16

16 1 16

17 0 4

18 1 16

19 1 16

20 0 4

S),mbol # 1
(l oo)

S),mbol # 2
(01 o)

(! 0 o) (001) N/A
(002) (001) N/A
(003) (0 0 1)

(0 04)

S),mbol # 3

(2 0-1)

N/A

N_(001)
(005) N/A N/A
(002) (005) N/A
(002) (006) N/A
(003) N/A N/A
(0 0 1) (0 0 4) N/A
(0 0 3) (0 0 1) N/A
(0 0 3)

(0 0 1)

(0 0 1)

(0 0 1)

(0 0 1)

N/A

(0 0 1)

(0 0 1)

N/A

N/A N/a,

(0 0 4) N/A

(0 0 2) N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

Thus, the entropy coder complexity and memory of EC-RVQ is

approximately 1.6 times that of the CEC-RVQ. By examining

the figage, it is evident that the bit rate for CEC-RVQ is

reduced by as much as 40% for the same PSNR as for

EC-RVQ. In addition to the rate-distortion performance im-

provement, CEC-RVQ requires less entropy-coder complexity

and memory.

Next, we compare CEC-RVQ with some of the finite-state

and predictive VQ techniques described in the VQ literature.

Table II shows the PSNR performance of two CEC-RVQ's,

a mean-removed memoryless finite-state VQ (FS-VQ) [13], a

mean-removed variable rate FSVQ (VR-FSVQ) using pruned

tree-structured VQ [13], a predictive variable rate FSVQ (PR-

VR-FSVQ) also using pruned tree-structured VQ [13], and a

dynamic FSVQ (DFSVQ) [14]. CEC-RVQ1 is the one used in

the previous experiment. CEC-RVQ2 is similar to CEC-RVQ1

but contains 32 stage codebooks, each with two code vectors

of size 4 x 4. The stage codcbooks are searched using the

M-search algorithm with M = 2, and all stage codebooks are

optimized jointly. The conditioning scheme used is the one

described in the previous experiment and illustrated in Fig.

2. The BFOS algorithm is again applied to a balanced tree

with depth 10, where the maximum number of conditional

probabilities is set to 4096. As can be seen from Table 17, both

CEC-RVQ's outperform the other finite-state and predictive

VQ techniques. In addition, CEC,RVQ generally requires less
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(a) (b)

(e) (d)

Fig. 8. Image BOAT coded at 0.18 b/pixel using (b) CEC-RVQ, (c) EC-RVQ, and (d) OPTIMIZED JPEG. The PSNR (in dB) is 29.74 for CEC-RVQ,

29.18 dB for EC-RVQ, and 27.46 dB for OPTIMIZED JPEG.

design complexity, encoding complexity, and memory.

We next consider using 8 x 8 vectors in the design of

CEC-RVQ. Each codebook contains 20 stage codebooks. Each

stage codebook contains four code vectors. M-search with

M = 2 is used in encoding, and all stage codebooks are

optimized jointly. Using the same conditioning scheme, the

same region of spatial-stage support, and the BFOS algorithm

applied to a balanced tree of depth 6 with a maximum of 1024

conditional probabilities, we obtain the results shown in Table

11I. By adding the N'p's, we obtain 1016, which is the actual
number of conditional probabilities. Note that unlike the 4 x 4

case, interstage dependencies are here significantly stronger

than spatial dependencies. In other words, more dependencies

exist between stages representing the same image block than

between stages representing adjacent image blocks. This is

expected because when the image block size increases to 8 x 8,

it is generally true that intrablock correlation increases, and
interblock correlation decreases.

Since each symbol represents an 8 x 8 vector, a larger

number of pixels is used in the conditioning, which leads to

significant gains in rate-distortion performance. To illustrate

this, Fig. 8 shows the BOAT image coded with CEC-RVQ,

EC-RVQ, and optimized JPEG (using public JPEG software

with -optimize). The " nc,,_ cod,,,__m.,,_,, _ with CEC-P, VQ is [eet'_r

than its EC-RVQ counterpart [9] subjectively and objectively,

and both are better than the image coded with optimized

JPEG. The PSNR at 0.18 b/pixel is 29.74 dB for CEC-RVQ,

29.18 dB for EC-RVQ, and 27.46 dB for optlmiTed JPEG.

The performance gain obtained by CEC-RVQ over EC-RVQ

comes at the expense of some additional design complexity.

However, the memory and encoding complexity of CEC-RVQ

are actually smaller than those of EC-RVQ. More specifically.
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(a) (b)

Fig. 9.

(in dB) are 21.88, 23.84, 26.86, and 29.08, respectively.

fq]
the EC-RVQ described inArequires the storage of 128 stage
code vectors per codebook and 1808 conditional probabilities

per set of entropy tables. The numbers for the CEC-RVQ

designed here are 80 and 1024, respectively. Moreover, CEC-

RVQ requires only 156 vector Lagran#an calculations per

input vector, whereas 240 of them are needed for EC-RVQ.

Comparing CEC-RVQ with JPEG, we first observe a large

image reproduction quality difference in favor of CEC-RVQ.

In terms of implementation costs, JPEG's decoding complexity

is sligJafly higJaer than that of EC-RVQ and CEC-RVQ, but its

encoding complexity and memory are substantially smaller.

Finally, the same 8 x 8 CEC-RVQ described above was

modified and tested in a full-resolution progressive transmis-

sion environment. More specifically, the conditioning structure

of Fig. 2 was replaced with the one in Fig. 5, sequential

search was used in encoding, and each stage codebook was

(c) (d)

Image BOAT coded using the progressive transmission CEC-RVQ at (a) 0.0161 bpp, (b) 0.045 bpp, (c) 0.117 bpp, and (d) 0.18 bpp. The PSNR's

optimized sequentially, as was first described in [6]. Interest-

ingly, the encoding/decoding complexity and memory of the

fully embedded CEC-RVQ coder are smaller. In particular,

only 80 vector Lagran_an calculations per input vector are

now required to produce the indices for the final reconstructed

image.

For a subjective comparison, Fig. 9 is provided. It shows the

test image BOAT coded at (a) 0.0161 b/pixel, (b) 0.045 b/pixel,

(c) 0.117 b/pixel, and (d) 0.18 b/pixel. Notice that only the first

two stage indices were decoded in Fig. 9(a) (fast decoding),
but the image can still be recognized. Moreover, although the

PSNR obtained for the full-resolution reconstructed image is

0.66 dB smaller than that of nonprogressive CEC-RVQ, the

visual quality is similar.


